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D i s c r e t e - t i m e M a r k o v c h a i n s

1. Time is indexed by an integer variable, say n.
2. At period n, the state of the chain is denoted by Xn·.
3. S is a finite set of possible states, then Xn ∈ S.
4. We will allow for m different states, then S = {1, 2, . . . ,m}, for m ∈ N.
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D i s c r e t e - t i m e M a r k o v c h a i n s

D e fi n i t i o n

Markov Chain The Markov chain is described in terms of its transition probabilities
pij : whenever the state happens to be i , there is probability pij that the next state is
equal to j:

pij = P(Xn+1 = j|Xn = i), i , j ∈ S

with pij ≥ 0 and
∑m

j=1 pij = 1 ∀i .

Note: the probability does not depend on time, nor anything else than the present
state.
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How to specify then a Markov Model?
Identify:

1. S the set of states.
2. the set of possible transitions, (i , j) where pij > 0
3. the values for those pij

The Markov chain specified by this model is a sequence of r.v.s X0,X1,X2, . . .,
that can take values in S, and which satisfy:

P(Xn+1 = j|Xn = i , {Xν = iν}n−1
ν=0) = pij

for any n, and any i , j ∈ S, and all possible sequences i0, . . . , in−1 of earlier states.
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It is convenient to sort all these probabilities in a two-dimensional array like this:
p11 p12 . . . p1m
p21 p22 . . . p2m
...

... . . . ...
pm1 pm2 . . . pmm


This is called the Transition Probability Matrix. This matrix is defined as having in
each row i and column j the probability of transitioning from state i to state j.
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E x a m p l e , B e r t s e k a s a n d T s i t s i k l i s ( 2 0 0 8 )

Alice is taking a probability class and in each week, she can be either up-to-date or she
may have fallen behind. If she is up-to-date in a given week, the probability that she
will be up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively) . If she is
behind in the given week, the probability that she will be up-to-date (or behind) in the
next week is 0.6 (or 0.4, respectively) . We assume that these probabilities do not
depend on whether she was up-to-date or behind in previous weeks, so the problem has
the typical Markov chain character (the future depends on the past only through the
present)
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Let 1 be the state of being up-to-date and 2 that she fell behind.

The transition probabilities: p11 = 0.8 p12 = 0.2 p21 = 0.6 p22 = 0.4

The transition probability matrix: [
0.8 0.2
0.6 0.4

]
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The transition probability graph:
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We have said that the state today depends only on the state in the previous period.
This is true, however, we can get around this constraint.

Consider the following example:
1. A working machine can be working the next day with probability p, and be broken

with probability 1− p.
2. A broken machine can be working the next day with probability q, and remain

broken with probability 1− q.

However, what happens if the machine cannot be fixed for, say, 4 straight days? Maybe
we need to buy a new one. To model this we can introduce new states to our system.
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1. A working machine can be working the next day with probability p, and be 1-day
broken with probability 1− p, and zero for n-days broken for n > 1.

2. A 1-day broken machine can be working the next day with probability q, and
become 2-day broken with probability 1− q, and zero for n-days broken for n 6= 2.

3. A 2-days broken machine can be working the next day with probability r , and
become broken for 3 days with probability 1− r , and zero for n-days broken for
n 6= 3.

4. A 3-days broken machine can be working the next day with probability s, and
become broken for 4 days with probability 1− s, and zero for n-days broken for
n 6= 4.

5. A 4-days broken machine can be working with probability 1, and zero for all the
other broken states.
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D e fi n i t i o n ( n- S t e p T r a n s i t i o n P r o b a b i l i t i e s )

Let rij(n) represent the probability that the state after n time periods will be j, given
that the current state is i .

rij(n) = P(Xn = j|X0 = i)

P r o p o s i t i o n ( C h a p m a n - K o l m o g o r o v )

The n-step transition probabilities can be generated by the recursive formula:

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i , j

starting with
rij(1) = pij
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Note that this is an element of the following matrix:
p11 p12 . . . p1m
p21 p22 . . . p2m
...

... . . . ...
pm1 pm2 . . . pmm


n
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This “realization” allow us to be able to ask and answer some interesting questions:
What can we say about limits? What happens as n → ∞?
The dependence of the state at n over the initial state becomes smaller as n
increases.
What can we say qualitatively about the behavior of this markov chain?
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Consider the transition matrix for the example we just saw:

A =

[
0.8 0.2
0.6 0.4

]

A2 =

[
0.7600 0.2400
0.7200 0.2800

]
A3 =

[
0.7520 0.2480
0.7440 0.2560

]
A4 =

[
0.7504 0.2496
0.7488 0.2512

]
A5 =

[
0.7501 0.2499
0.7498 0.2502

]
A6 =

[
0.7500 0.2500
0.7500 0.2500

]
A7 =

[
0.7500 0.2500
0.7500 0.2500

]

Note how as n → ∞ rij(n) goes to a limit that does not depend on the initial state.
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D e fi n i t i o n ( A c c e s s i b l e s t a t e )

A state j is accessible from a state i if ∃n ∈ N such that the n-step transition
probability rij(n) is positive, i.e., if there is positive probability of reaching j, starting
from i , after some number of periods.

D e fi n i t i o n ( R e c u r r e n t s t a t e )

Let A(i) be the set of states that are accessible from i . We say that i is recurrent if
∀j ∈ A(i) ⇒ i ∈ A(j).

D e fi n i t i o n ( T r a n s i e n t s t a t e )

A state is called transient if it is not recurrent.
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C o r o l l a r y

A recurrent state will be visited an infinity amount of times.

C o r o l l a r y

A transient state will be visited a finite amount of times.
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Which of the following nodes are transient and which are recurrent?

A B C D

Recurrent Transient Recurrent Recurrent
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D e fi n i t i o n ( R e c u r r e n t c l a s s )

If i is a recurrent state, the set of sattes A(i) that are accessible from i form a
recurrent class (or simply a class), meaning that states in A(i) are all accessible from
each other, and no state outside A(i) is accessible from them.
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S t e a d y s t a t e b e h a v i o r

When we talk about steady state in Markov Chains, it is not the “state” that is steady,
but the probabilities of arriving to a certain state, remember the example we had
before?

πj = P(Xn = j), when n is large.
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T h e o r e m ( S t e a d y - S t a t e C o n v e r g e n c e T h e o r e m )

Consider a Markov chain with a single recurrent class, which is periodic. Then, the
states j are associated with steady-state probabilities πj that have the following
properties:

1. For each j, we have
l i m

n→∞
rij(n) = πj , ∀i

2. The πj are the unique solution to the system of equations below:

πj =
m∑

k=1

πkpkj , j = 1, . . . ,m,

1 =
m∑

k=1

πk

3. We have
πj = 0 , for all transient states j
πj > 0 , for all recurrent states j P. Fagandini



Note that the steady-state probabilities add up to 1...

Therefore these form a probability distribution on the state space, this is called the
stationary distribution of the chain.
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D e fi n i t i o n ( B a l a n c e E q u a t i o n s )

The equations

πj =
m∑

k=1

πkpkj , j = 1, . . . ,m,

are called balance equations, and they are a direct consequence of the first part of
the Steady-State Convergence Theorem, and the Chapman-Kolmogorov equation.

D e fi n i t i o n ( N o r m a l i z a t i o n E q u a t i o n )

The equation
summ

k=1πk = 1

is known as the normalization equation.
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E x a m p l e

Consider our original example: p11 = 0.8 p12 = 0.2 p21 = 0.6 p22 = 0.4
Clearly, on the limit rij → πj if this converges, then the balance equations say:

π1 = π1p11 + π2p21 π2 = π1p12 + π2p22

Which, replacing, become:

π1 = 0.8π1 + 0.6π2 π2 = 0.2π1 + 0.4π2

Solving, we obtain π1 = 3π2 in both equations, which together with the normalization
equation π1 + π2 = 1 lead us to:

π1 = 0.75

π2 = 0.25
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